\(\int \frac {x (1+a x)}{\sqrt {a x} \sqrt {1-a x}} \, dx\) [24]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 63 \[ \int \frac {x (1+a x)}{\sqrt {a x} \sqrt {1-a x}} \, dx=-\frac {7 \sqrt {a x} \sqrt {1-a x}}{4 a^2}-\frac {(a x)^{3/2} \sqrt {1-a x}}{2 a^2}-\frac {7 \arcsin (1-2 a x)}{8 a^2} \]

[Out]

7/8*arcsin(2*a*x-1)/a^2-1/2*(a*x)^(3/2)*(-a*x+1)^(1/2)/a^2-7/4*(a*x)^(1/2)*(-a*x+1)^(1/2)/a^2

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {16, 81, 52, 55, 633, 222} \[ \int \frac {x (1+a x)}{\sqrt {a x} \sqrt {1-a x}} \, dx=-\frac {7 \arcsin (1-2 a x)}{8 a^2}-\frac {\sqrt {1-a x} (a x)^{3/2}}{2 a^2}-\frac {7 \sqrt {1-a x} \sqrt {a x}}{4 a^2} \]

[In]

Int[(x*(1 + a*x))/(Sqrt[a*x]*Sqrt[1 - a*x]),x]

[Out]

(-7*Sqrt[a*x]*Sqrt[1 - a*x])/(4*a^2) - ((a*x)^(3/2)*Sqrt[1 - a*x])/(2*a^2) - (7*ArcSin[1 - 2*a*x])/(8*a^2)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 55

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Int[1/Sqrt[a*c - b*(a - c)*x - b^2*x^2]
, x] /; FreeQ[{a, b, c, d}, x] && EqQ[b + d, 0] && GtQ[a + c, 0]

Rule 81

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 633

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*(-4*(c/(b^2 - 4*a*c)))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {\sqrt {a x} (1+a x)}{\sqrt {1-a x}} \, dx}{a} \\ & = -\frac {(a x)^{3/2} \sqrt {1-a x}}{2 a^2}+\frac {7 \int \frac {\sqrt {a x}}{\sqrt {1-a x}} \, dx}{4 a} \\ & = -\frac {7 \sqrt {a x} \sqrt {1-a x}}{4 a^2}-\frac {(a x)^{3/2} \sqrt {1-a x}}{2 a^2}+\frac {7 \int \frac {1}{\sqrt {a x} \sqrt {1-a x}} \, dx}{8 a} \\ & = -\frac {7 \sqrt {a x} \sqrt {1-a x}}{4 a^2}-\frac {(a x)^{3/2} \sqrt {1-a x}}{2 a^2}+\frac {7 \int \frac {1}{\sqrt {a x-a^2 x^2}} \, dx}{8 a} \\ & = -\frac {7 \sqrt {a x} \sqrt {1-a x}}{4 a^2}-\frac {(a x)^{3/2} \sqrt {1-a x}}{2 a^2}-\frac {7 \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a^2}}} \, dx,x,a-2 a^2 x\right )}{8 a^3} \\ & = -\frac {7 \sqrt {a x} \sqrt {1-a x}}{4 a^2}-\frac {(a x)^{3/2} \sqrt {1-a x}}{2 a^2}-\frac {7 \sin ^{-1}(1-2 a x)}{8 a^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.38 \[ \int \frac {x (1+a x)}{\sqrt {a x} \sqrt {1-a x}} \, dx=\frac {\sqrt {a} x \left (-7+5 a x+2 a^2 x^2\right )+14 \sqrt {x} \sqrt {1-a x} \arctan \left (\frac {\sqrt {a} \sqrt {x}}{-1+\sqrt {1-a x}}\right )}{4 a^{3/2} \sqrt {-a x (-1+a x)}} \]

[In]

Integrate[(x*(1 + a*x))/(Sqrt[a*x]*Sqrt[1 - a*x]),x]

[Out]

(Sqrt[a]*x*(-7 + 5*a*x + 2*a^2*x^2) + 14*Sqrt[x]*Sqrt[1 - a*x]*ArcTan[(Sqrt[a]*Sqrt[x])/(-1 + Sqrt[1 - a*x])])
/(4*a^(3/2)*Sqrt[-(a*x*(-1 + a*x))])

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 1.54 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.43

method result size
default \(-\frac {\sqrt {-a x +1}\, x \left (4 \,\operatorname {csgn}\left (a \right ) \sqrt {-x \left (a x -1\right ) a}\, a x +14 \,\operatorname {csgn}\left (a \right ) \sqrt {-x \left (a x -1\right ) a}-7 \arctan \left (\frac {\operatorname {csgn}\left (a \right ) \left (2 a x -1\right )}{2 \sqrt {-x \left (a x -1\right ) a}}\right )\right ) \operatorname {csgn}\left (a \right )}{8 a \sqrt {a x}\, \sqrt {-x \left (a x -1\right ) a}}\) \(90\)
risch \(\frac {\left (2 a x +7\right ) x \left (a x -1\right ) \sqrt {a x \left (-a x +1\right )}}{4 a \sqrt {-x \left (a x -1\right ) a}\, \sqrt {a x}\, \sqrt {-a x +1}}+\frac {7 \arctan \left (\frac {\sqrt {a^{2}}\, \left (x -\frac {1}{2 a}\right )}{\sqrt {-a^{2} x^{2}+a x}}\right ) \sqrt {a x \left (-a x +1\right )}}{8 a \sqrt {a^{2}}\, \sqrt {a x}\, \sqrt {-a x +1}}\) \(116\)
meijerg \(-\frac {\sqrt {x}\, \left (-\frac {\sqrt {\pi }\, \sqrt {x}\, \left (-a \right )^{\frac {5}{2}} \left (10 a x +15\right ) \sqrt {-a x +1}}{20 a^{2}}+\frac {3 \sqrt {\pi }\, \left (-a \right )^{\frac {5}{2}} \arcsin \left (\sqrt {a}\, \sqrt {x}\right )}{4 a^{\frac {5}{2}}}\right )}{\left (-a \right )^{\frac {3}{2}} \sqrt {a x}\, \sqrt {\pi }}-\frac {\sqrt {x}\, \left (-\frac {\sqrt {\pi }\, \sqrt {x}\, \left (-a \right )^{\frac {3}{2}} \sqrt {-a x +1}}{a}+\frac {\sqrt {\pi }\, \left (-a \right )^{\frac {3}{2}} \arcsin \left (\sqrt {a}\, \sqrt {x}\right )}{a^{\frac {3}{2}}}\right )}{\sqrt {-a}\, \sqrt {a x}\, \sqrt {\pi }\, a}\) \(138\)

[In]

int(x*(a*x+1)/(a*x)^(1/2)/(-a*x+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/8*(-a*x+1)^(1/2)*x/a*(4*csgn(a)*(-x*(a*x-1)*a)^(1/2)*a*x+14*csgn(a)*(-x*(a*x-1)*a)^(1/2)-7*arctan(1/2*csgn(
a)*(2*a*x-1)/(-x*(a*x-1)*a)^(1/2)))*csgn(a)/(a*x)^(1/2)/(-x*(a*x-1)*a)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.78 \[ \int \frac {x (1+a x)}{\sqrt {a x} \sqrt {1-a x}} \, dx=-\frac {{\left (2 \, a x + 7\right )} \sqrt {a x} \sqrt {-a x + 1} + 7 \, \arctan \left (\frac {\sqrt {a x} \sqrt {-a x + 1}}{a x}\right )}{4 \, a^{2}} \]

[In]

integrate(x*(a*x+1)/(a*x)^(1/2)/(-a*x+1)^(1/2),x, algorithm="fricas")

[Out]

-1/4*((2*a*x + 7)*sqrt(a*x)*sqrt(-a*x + 1) + 7*arctan(sqrt(a*x)*sqrt(-a*x + 1)/(a*x)))/a^2

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 4.94 (sec) , antiderivative size = 269, normalized size of antiderivative = 4.27 \[ \int \frac {x (1+a x)}{\sqrt {a x} \sqrt {1-a x}} \, dx=a \left (\begin {cases} - \frac {3 i \operatorname {acosh}{\left (\sqrt {a} \sqrt {x} \right )}}{4 a^{3}} - \frac {i x^{\frac {5}{2}}}{2 \sqrt {a} \sqrt {a x - 1}} - \frac {i x^{\frac {3}{2}}}{4 a^{\frac {3}{2}} \sqrt {a x - 1}} + \frac {3 i \sqrt {x}}{4 a^{\frac {5}{2}} \sqrt {a x - 1}} & \text {for}\: \left |{a x}\right | > 1 \\\frac {3 \operatorname {asin}{\left (\sqrt {a} \sqrt {x} \right )}}{4 a^{3}} + \frac {x^{\frac {5}{2}}}{2 \sqrt {a} \sqrt {- a x + 1}} + \frac {x^{\frac {3}{2}}}{4 a^{\frac {3}{2}} \sqrt {- a x + 1}} - \frac {3 \sqrt {x}}{4 a^{\frac {5}{2}} \sqrt {- a x + 1}} & \text {otherwise} \end {cases}\right ) + \begin {cases} - \frac {i \operatorname {acosh}{\left (\sqrt {a} \sqrt {x} \right )}}{a^{2}} - \frac {i \sqrt {x} \sqrt {a x - 1}}{a^{\frac {3}{2}}} & \text {for}\: \left |{a x}\right | > 1 \\\frac {\operatorname {asin}{\left (\sqrt {a} \sqrt {x} \right )}}{a^{2}} + \frac {x^{\frac {3}{2}}}{\sqrt {a} \sqrt {- a x + 1}} - \frac {\sqrt {x}}{a^{\frac {3}{2}} \sqrt {- a x + 1}} & \text {otherwise} \end {cases} \]

[In]

integrate(x*(a*x+1)/(a*x)**(1/2)/(-a*x+1)**(1/2),x)

[Out]

a*Piecewise((-3*I*acosh(sqrt(a)*sqrt(x))/(4*a**3) - I*x**(5/2)/(2*sqrt(a)*sqrt(a*x - 1)) - I*x**(3/2)/(4*a**(3
/2)*sqrt(a*x - 1)) + 3*I*sqrt(x)/(4*a**(5/2)*sqrt(a*x - 1)), Abs(a*x) > 1), (3*asin(sqrt(a)*sqrt(x))/(4*a**3)
+ x**(5/2)/(2*sqrt(a)*sqrt(-a*x + 1)) + x**(3/2)/(4*a**(3/2)*sqrt(-a*x + 1)) - 3*sqrt(x)/(4*a**(5/2)*sqrt(-a*x
 + 1)), True)) + Piecewise((-I*acosh(sqrt(a)*sqrt(x))/a**2 - I*sqrt(x)*sqrt(a*x - 1)/a**(3/2), Abs(a*x) > 1),
(asin(sqrt(a)*sqrt(x))/a**2 + x**(3/2)/(sqrt(a)*sqrt(-a*x + 1)) - sqrt(x)/(a**(3/2)*sqrt(-a*x + 1)), True))

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.97 \[ \int \frac {x (1+a x)}{\sqrt {a x} \sqrt {1-a x}} \, dx=-\frac {\sqrt {-a^{2} x^{2} + a x} x}{2 \, a} - \frac {7 \, \arcsin \left (-\frac {2 \, a^{2} x - a}{a}\right )}{8 \, a^{2}} - \frac {7 \, \sqrt {-a^{2} x^{2} + a x}}{4 \, a^{2}} \]

[In]

integrate(x*(a*x+1)/(a*x)^(1/2)/(-a*x+1)^(1/2),x, algorithm="maxima")

[Out]

-1/2*sqrt(-a^2*x^2 + a*x)*x/a - 7/8*arcsin(-(2*a^2*x - a)/a)/a^2 - 7/4*sqrt(-a^2*x^2 + a*x)/a^2

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.54 \[ \int \frac {x (1+a x)}{\sqrt {a x} \sqrt {1-a x}} \, dx=-\frac {{\left (2 \, a x + 7\right )} \sqrt {a x} \sqrt {-a x + 1} - 7 \, \arcsin \left (\sqrt {a x}\right )}{4 \, a^{2}} \]

[In]

integrate(x*(a*x+1)/(a*x)^(1/2)/(-a*x+1)^(1/2),x, algorithm="giac")

[Out]

-1/4*((2*a*x + 7)*sqrt(a*x)*sqrt(-a*x + 1) - 7*arcsin(sqrt(a*x)))/a^2

Mupad [B] (verification not implemented)

Time = 5.14 (sec) , antiderivative size = 191, normalized size of antiderivative = 3.03 \[ \int \frac {x (1+a x)}{\sqrt {a x} \sqrt {1-a x}} \, dx=\frac {7\,\mathrm {atan}\left (\frac {\sqrt {a\,x}}{\sqrt {1-a\,x}-1}\right )}{2\,a^2}-\frac {\frac {2\,\sqrt {a\,x}}{\sqrt {1-a\,x}-1}-\frac {2\,{\left (a\,x\right )}^{3/2}}{{\left (\sqrt {1-a\,x}-1\right )}^3}}{a^2\,{\left (\frac {a\,x}{{\left (\sqrt {1-a\,x}-1\right )}^2}+1\right )}^2}-\frac {\frac {3\,\sqrt {a\,x}}{2\,\left (\sqrt {1-a\,x}-1\right )}+\frac {11\,{\left (a\,x\right )}^{3/2}}{2\,{\left (\sqrt {1-a\,x}-1\right )}^3}-\frac {11\,{\left (a\,x\right )}^{5/2}}{2\,{\left (\sqrt {1-a\,x}-1\right )}^5}-\frac {3\,{\left (a\,x\right )}^{7/2}}{2\,{\left (\sqrt {1-a\,x}-1\right )}^7}}{a^2\,{\left (\frac {a\,x}{{\left (\sqrt {1-a\,x}-1\right )}^2}+1\right )}^4} \]

[In]

int((x*(a*x + 1))/((a*x)^(1/2)*(1 - a*x)^(1/2)),x)

[Out]

(7*atan((a*x)^(1/2)/((1 - a*x)^(1/2) - 1)))/(2*a^2) - ((2*(a*x)^(1/2))/((1 - a*x)^(1/2) - 1) - (2*(a*x)^(3/2))
/((1 - a*x)^(1/2) - 1)^3)/(a^2*((a*x)/((1 - a*x)^(1/2) - 1)^2 + 1)^2) - ((3*(a*x)^(1/2))/(2*((1 - a*x)^(1/2) -
 1)) + (11*(a*x)^(3/2))/(2*((1 - a*x)^(1/2) - 1)^3) - (11*(a*x)^(5/2))/(2*((1 - a*x)^(1/2) - 1)^5) - (3*(a*x)^
(7/2))/(2*((1 - a*x)^(1/2) - 1)^7))/(a^2*((a*x)/((1 - a*x)^(1/2) - 1)^2 + 1)^4)